
CHECKER

written by Andrzej Trybulec

compiled by Freek Wiedijk

Abstract

This is a compilation of a series of e-mail messages by Andrzej Trybulec.
The basic inference step (by) of the Mizar system is described.

1

Let us start with two things:
We have to check an inference1 of the form

b1 · · · bk

a

(bi are referenced premises, maybe by ‘then’. Then/hence is only syntactic
sugar.)

The checker is a disprover, i.e. it negates the conclusion, puts it among
premises and tries to get contradiction. So it has to check:

b1 · · · bk ¬a

⊥

The second point that is important: Mizar works with a system of semantic
correlates. The concept of semantic correclates had been introduced by Roman
Suszko in his works on non-Fregean logic. He does it syntactically, but on the
semantic levels one can present them in the following way:

Let F be algebra of formulae, let it be a universal free algebra with usual set
of connectives: ∧, ∨, →, ↔, ¬. I would like to have also nullary connectives:
⊤ and ⊥ (or in the Mizar notation maybe ‘contradiction’ for ⊥, we have no
notation for ⊤). And we need quantifiers: ∀ and ∃, I would prefer to think
about them as families of operations, two operations for any variable, one of
course must explain what a variable is, let us postpone this.

1‘inference’ is basically an uncountable word in English, but when I used ‘an inference’

nobody protested, so I think we may use it.

1



Let L be corresponding Lindebaum algebra (it should be called Tarski-
Lindenbaum algebra, but usually it is called just Lindenbaum), i.e. the alge-
bra of logically equivalent classes of formulae, and let l : F → L be canonical
mapping.

Then by an algebra of semantic correlates we mean a factorization of the
mapping l

F

K

L-

@
@
@R �

���

l

k

Of course, as special cases we get as algebras of semantic correlates F and L

(with k equal to the identity and l resp.) Now, for practical application we want
k be a computable function, with low complexity.

In Mizar, as yet, the system of semantic correlates is close to abstract syntax,
but:

All propositional connectives but ∧, ¬ and ⊤, are eliminated using well
known rules (de Morgan laws etc.), the only explanation needed: the equivalence
a ↔ b is equal to

(a → b) ∧ (b → a)

i.e.
¬(a ∧ ¬b) ∧ ¬(b ∧ ¬a)

The other possibility:
(a ∧ b) ∨ (¬a ∧ ¬b)

i.e.
¬(¬(a ∧ b) ∧ ¬(¬a ∧ ¬b))

seems to be less useful.
There are additional laws.

1. The conjunction is associative (but not commutative).

2. ⊤ is the unity of conjunction.

3. The negation is an involution: ¬¬a = a.

We just started to experiment with the distributivity of the universal quan-
tifier with respect to conjunction.

I think that it is enough for the beginning, just observe that some of logical
laws are obvious, because we work with semantic correlates.

Any way, because checker is a disprover, and because of the semantic
correlates used, the inference

∀x. a(x)

a(c)

2



is basically the same as
a(c)

∃x. a(x)

∗ ∗ ∗

It is not very clear to me why it makes a difference that conjunction
is not commutative (does it make a difference for what checker

accepts?)

Yes, the inference
∀x∃y. P [x, y] ∧ Q[x, y]

∃y. P [x0, y] ∧ Q[x0, y]

is accepted
∀x∃y. P [x, y] ∧ Q[x, y]

∃y.Q[x0, y] ∧ P [x0, y]

is not. Some people, at least one (Pauline N. Kawamoto), believe that it is
serious shortcoming.

Apparently, there is some relation between ∀ and ∃ on the level of
semantic correlates as well: apparently ∀ and ¬∃¬ in your F map
to the same element of your K. So do you eliminate all the ∃’s as
well, like the disjunctions?

Yes, I forgot to write about it.

Another question: do you eliminate propositional connectives only on
the outer level (so outside the quantifiers) or inside the quantifiers
as well?

All of them, in the scope of a quantifier, too.

2

The next step is:
Given

p1 · · · pk

⊥

checker conjugate all premises (pi – an arbitrary formula) and creates a dis-
junctive normal form of the conjunction. Two remarks:

3



1. It is a normal form created from atomic (all kinds of them) and universal
sentences; because we needed a more general concept of normal form that
is usually used it prompted me to define it in Mizar (NORMFORM) and I
had proved that it is a Heyting algebra (HEYTING1); recently we develop
theory of such lattices – we may claim that some part of checker is
already described in Mizar :-)

2. Among all possible normal forms, checker chooses what we call the
standard normal form – just the normal form that we get using so many
times distributivity of disjuction with respect to conjunction as necessary.
We experimented earlier with the canonical normal form (all disjuncts of
the same length) it gives a bit stronger concept of obviousness, and the
regular normal form (it is element of a Heyting algebra), but it complicates
things and the gain is comparatively small.

Now we get something like

(q1,1 ∧ . . . ∧ q1,k1
) ∨ . . . ∨ (qn,1 ∧ . . . ∧ qn,kn

)

⊥

and of course checker tries to refute the consecutive disjuncts:

q1,1 ∧ . . . ∧ q1,k1

⊥
· · ·

qn,1 ∧ . . . ∧ qn,kn

⊥

In this way we get rid of the propositional calculus, if the original inference is
obvious on the propositional level, the disjunctive normal form is empty, nothing
to refute and the inference is accepted.

Of course we got more: different cases are separated now. They are checked
separately and errors are reported independently: one sometimes get many

*4

or rather
*4,4,4,4,4,4,4

It is an error, we should report e.g. which disjuncts are not refuted, but it is not
easy to compute the index of the disjunct, and we need a #.LOG file anyway.

Of course in most cases we have just one disjunct.

∗ ∗ ∗

You say this like it doesn’t matter for the result in which order you
apply the distributivity laws. That probably is the case then, although
it isn’t completely obvious to me.

4



It is a consequence of the associativity. However we do more: the absorption law
is used to remove too long disjuncts. And because in fact disjunctive normal
form (in checker) is rather a set (ordered collection, then not list) of dis-
juncts, that are boolean valued partial functions, then on this level conjunction
is commutative.

We experimented earlier with the canonical normal form
(all disjuncts of the same length)

You mean with all atoms in all the disjuncts the same, but depending
on which disjunct it is, with or without a negation? Some subset of
the 2n disjuncts?

Yes, perfect.

3

checker in fact consists of three passes, as yet we talked about the first pass
that we call the prechecker, the next is equalizer (because the main role of
it is to cope with the equality calculus), the last we call unifier, that is a bad
name, because we do not allow for substitution of a variable to a variable. We
have no better name. Let us move to unifier.

In a disjunct checker chooses a universal sentence (if any, if there is no
universal sentence, the inference is not accepted), which we call a ‘main premise’,
in it removes external universal quantifiers, and change bound variables to free.

It is convenient to think about resulting formula as a ∧/∨ tree, because
de Morgan laws hold for semantic correlates, we may push down negations to
leaves.

The remaining premises are called auxiliary premises.
In the main premise we have on leaves (possibly negated) basic formulae

(atomic or universal) with free variables. For every leaf checker looks for
auxiliary premises with different sign (i.e. not negated if the formula on the leaf
is negated and non negated if it is) and the same structure, i.e. such auxiliary
premises that differs only on places in which in the formula on the leaf a free
variable occurs. (I hope I got the syntax correct :-))

So on every leaf we get a list of substitutions (partial maps from free variables
to ground terms) after which the formula of the leaf is contradictory with an
auxiliary premise.

Then we use an algebra of substitutions: if σ(f) is the list of substitutions
of the formula f , then

σ(f ∧ g) = f ∪ g

σ(f ∨ g) = {s1 ∪ s2 : s1 ∈ σ(f), s2 ∈ σ(g) and s1 ∪ s2 is a function}

5



The last condition means that it does not try to substitute two different ground
terms for the same variable.

Similarly as in the case of the propositional calculus list of substitutions are
standarized, bigger substitutions are removed. I believe I forgot to write that
when we create disjunctive normal form we remove contradictory disjuncts, that
corresponds to the condition that f ∪ g is a function.

Then if σ(m), where m is the main formula, is non empty, the set of premises
is contradictory and the inference is accepted.

The lattice of list of substitutions is described in SUBSTLAT and the proof
that it is a Heying algebra in HEYTING2. In fact the lattices of normal forms are
special cases (up to isomorphism) of lattices of substitutions.

∗ ∗ ∗

Something I wondered about: is checker a big part of Mizar’s
source code?

The unit checker is 15% of the code (about 150 kBytes), but some procedures
needed in checker, or shared with other units are in other units.

So I guess unifier just tries all universal sentences, one by one?
Is there a heuristic which one to start with, or does unifier just
try them in order from left to right? (I understand that this doesn’t
matter for the semantics of ‘by’, but I wondered about this.)

Usually there is one universal premise, but if there is more the order is accidental.

4

Going back to the checker. Maybe you observed that the rules for main
premise are not precise. I wrote, purposefully, ‘external universal quantifiers’
but the phrase has at least two meanings:

• the universal quantifiers on the beginning of the proposition

• the universal quantifiers that are not in the scope of an existential quantifer
(here we should presume that negations are pushed to leaves, but this time
leaves are nodes labelled by atomic sentences rather and not universal)

In some old checkers we used the first approach, now the second is used. But
then (if we do nothing else) the inference

∀xy. P [x, y]

∀y. P [a, y]

6



is not accepted. It is in fact

∀xy. P [x, y] ∃y.¬P [a, y]

⊥

Because of that we have an additional rule: prechecker extracts existential
sentences from disjuncts in DNF and does existential elimination (if I recall the
name), we rather say it uses the choice rule automatically. And after introducing
new constants, creates again DNF.

Then the inference above is accepted.
The second problem, checker standarize premises, i.e. it uses the distribu-

tivity of universal quantifier with respect to conjunction (and what’s the same
distributivity of existential quantifier with respect to disjunction). It is a first
step to change semantic correlates in Mizar (I believe I already wrote about
that). Of course in implementation we use sort of normalized form, and it
means that quantifiers are pushed down. I mean that instead of

∀x. P [x] ∧ Q[x]

we have in fact
(∀x. P [x]) ∧ (∀x.Q[x])

After introducing this (it is comparatively new) we revised MML, but the gain
was very small. I do not remember the numbers, but it was negligable. However
some steps like

∀x. P [x] ↔ Q[x]

∀x. P [x] → Q[x]

had been eliminated. It caused also the need to eliminate fictitious variables.
This I do not like, but because of

∀xy. P [x] ∧ Q[y]

it was necessary.

∗ ∗ ∗

This strengthening of the checker caused some funny phenomena. Somebody,
I believe Markus Wenzel (the author of Isar), asked about the use of Mizar for
‘pure logic’, I prepared some axiomatic files for it and wanted to prove

((∀x.Works[x]) → WFS ) → ∃x. (Works[x] → WFS )

(the last pair of parentheses is not necessary, I put them to avoid misunder-
standing). Before proving it (the simplest prove is just to separate cases: either
everybody works, then from the assumption we have Well Fare State or some-
body does not work, then he is the bastard for which it is true that if he works we

7



have Well Fare State. Students usually propose the prime minister as the can-
didate, but it is wrong – the tautology is not intuitionistic, and the constructive
proof is impossible :-).

I am lazy so first I put semicolon after the sentence, and I observed with some
horror that it had been accepted. What happens: after distributing quantifers
checker got

¬(((∀x.Works[x]) → WFS ) → ∃x. (Works[x] → WFS ))

⊥

i.e.
(¬∀x.Works[x]) ∨ WFS ¬∃x. (¬Works[x] ∨ WFS )

⊥

i.e.
¬Works[x0] ∨ WFS ¬(∃x.¬Works[x]) ∨ ¬WFS

⊥

Sorry, I was convinced that we have to distribute quantifers to get it accepted.
Now writing down this example I am not certain. What do you think?

∗ ∗ ∗

I understand what prechecker does (it brings things in some
canonical form, and leads to a set of conjunctions from each of which
falsity should be derived.)

It is OK. However, it does a bit more. E.g. uses the choice rule by default, i.e. it
introduces local constants, if an existential sentence is among premises.

I also think I understand unifier: it skolemizes (= introduces new
function symbols for existentials) and then takes one universally
quantified formula from the conjunction which it tries to instanti-
ate to get a contradiction.

No, we do not use skolemization, so processing basically ‘stops’ on existential
quantifiers. To be more precise: an existential sentence is treated as a whole
and only contradiction between it (after substantiation) we a universal sentence
is checked.

So that leaves equalizer. That pass does ‘congruence closure’ on
the equalities in the conjunction. But how does it interact with uni-

fier? And what happens to equalities under the universal quantifier
that’s being instantiated (are those added to the congruence too?)

8



It is true. equalizer introduce what we call ‘aggregated constants’ or ‘equating
classes’ (we should work on the terminology) and uses them for instantiation.
An aggregated constant is characterized by the list of its possible forms and
their types (all expressed using aggregated constants).

But how thus this interfere with the ‘calculus of substitu-
tions’ that you told me about?

Just these aggregated constants are substituted.

Actually it does not add the equalities (from universal sentences), but it does a
forward reasoning, it adds inequalities that are consequences of premises, e.g.,
if among premises occurs

(a + b) + c 6= (b + a) + c

it adds
a + b 6= b + a

To avoid calling prechecker again, we have ‘one difference rule’, that says that
the inequality is added, if it is the only inequality between two unequal terms
(or the only difference between two atomic sentence with opposite valuation).

Now I don’t understand any more. If you add inequalities,
then you can’t represent them as list of possible forms? Or
can you?

Now I do not understand. Maybe . . .

Sentences in Mizar are not terms, we have three classes of (small
constructions): formulae, terms and types, and they are processed
in a different way. We just keep a list of sentences, we may add their
consequences to the list.

The equalizer (maybe it is its main role) is also a gate through which we
smuggle requirements and similar ‘additional but practical’ rules.

I suppose you mean things like ‘symmetry’ and so on?

Yes.

∗ ∗ ∗

So terms and types are represented by aggregated constants, and for-
mulae are not? (I mean: equivalent formulae are not represented by
one ‘aggregated formula’?)

9



Only terms. There is not a concept of equality of type (well, you may say that
the types θ1 and θ2 are equal if the sentence

∀x : set . (x : θ1 ↔ x : θ2)

it does not seem useful) The equivalence calculus was discussed, but we think
that the gain of building it in is minimal.

So what happens to formulae?

All terms in formulae and type (and of course term :-)) are substituted by its
aggregate constants (basically by a constant I mean here a ground term).

Also: how are the clusters integrated into this? Are the type aggre-
gates extended automatically by the clusters?

Basically clusters in types are rounded up in analyzer, but equalizer tries
to round up them again, using the fact that an aggregated constant has many
types (inherited from the members)

5

What I never wrote as yet:
We keep formulae on two lists: P – positively valued and N – negatively

valued. On this list we keep (all kinds of) atomic formulae and universal for-
mulae.

But:

• equalities are removed from the P list; negatively valued2 are still on the
N list

• negatively valued universal sentences (i.e. existential sentence) are re-
moved from the N list (they had been used by prechecker the choice
rule).

After creating aggregated constants equalizer checks if it can get a contradic-
tion:

1. maybe two differently valued formulae become equal

2. maybe we got E 6= E

2i.e. ‘unequalities’? inequalities?, the same problem in Polish, inequality means something

like ‘1 < k’

10



ad 1

P [a] a = b

P [b]

after aggregation we got E = {a, b}

the P list P [E]
the N list P [E] (actually ¬P [E])

so the inference is accepted

ad 2 let us check

(a = b ∨ c = d) ∧ (a = c ∨ b = d) → a = d ∨ b = c

so we have to refute

(a = b ∨ c = d) ∧ (a = c ∨ b = d) ∧ ¬(a = d ∨ b = c)

DNF is
a = b ∧ a = c ∧ a 6= d ∧ b 6= c ∨
a = b ∧ b = d ∧ a 6= d ∧ b 6= c ∨
c = d ∧ a = c ∧ a 6= d ∧ b 6= c ∨
c = d ∧ b = d ∧ a 6= d ∧ b 6= c

after aggregation:

E1 = E1 ∧ E1 = E1 ∧ E1 6= E2 ∧ E1 6= E1,

E1 = E1 ∧ E1 = E1 ∧ E1 6= E1 ∧ E1 6= E2,

E1 = E1 ∧ E1 = E1 ∧ E1 6= E1 ∧ E2 6= E1,

E1 = E1 ∧ E1 = E1 ∧ E2 6= E1 ∧ E1 6= E1

so we got contradiction, and the inference is accepted.

∗ ∗ ∗

The commutativity keyword is taken into account when doing the
aggregation? Are there other properties like that that affect what is
aggregated?

Actually it is before aggregation. The first step of equalizer (or maybe the
zero step) it collecting terms. It is like initialization of the aggregation. We
want terms to be kept in one copy, so it browses the formulae and types, and
terms of course to prepare a list of terms that occur in the inference. The
terms themselves are substituted by (trivial) aggregated constants. But we
must remember their structure, so the object representing a collected term has
a field that is the list of possible forms of it.

11



Collecting a term
(a + b) + c = a + (b + c)

we get
E1 = a EqList = {a}
E2 = b EqList = {b}
E3 = a + b EqList = {E1 + E2, E2 + E1}
E4 = c EqList = {c}
E5 = (a + b) + c EqList = {E3 + E4, E4 + E3}
E6 = b + c EqList = {E2 + E4, E4 + E2}
E7 = a + (b + c) EqList = {E1 + E6, E6 + E1}

It is a trick, it hardly can be used for the associativity, and we are in the great
need to have it.

Also we want to have

• involutiveness, like
−(−x) = x

• projectivity, like
abs(abs(x)) = abs(x)

but when we started to implement, we tried to do it as part of the aggregation
(the trick with the commutativity cannot be used, because equating −(−E) to
E must to deal with the situation:

a = −b

b = −c

and to equate a and c we need the aggregation.) Well, we tried but we failed,
the data structures should be changed to do it.

What affect aggregation:

1. explicit equalities

2. ‘default equalities’ (‘take’ and ‘reconsider’ introduce new constant that
is equal by default to term that is taken or reconsidered)

3. processing structures (if two structures are equal corresponding fields are
equal)

4. requirements; it is quite irregular, but typical is equating x − 0 and x

(requirement REAL); not so typical is equating a set that is empty with the
empty set. e.g. ∅ A (SUBSET_1:def 3) with ∅ (BOOLE:def 1)

So formulae are added to these lists by (1) ‘propagating inequalities’,
and (2) by the properties of the predicates (symmetry, antonym,
etc.), and (3) by the requirements?

12



Only propagating inequalities; in other cases the formula is if constructed is
virtual, usually it is not.

For a specific example: if I have a step 3 + 4 = 7 in my proof, how
does equalizer prove that?

In the object representing a collected term there are two fields (I do not remem-
ber the names)

• a boolean field ‘term has an integer value’ initialized of course as false,
but for numerals

• an integer field ‘the integer value of it’ (undefined if it has not an inte-
ger value and initialized to the value for (small) integers (‘small’ means
‘longint’ we doubt if we should use ‘int64’))

The terms having the same integer value are equated. Then to refute

3 + 4 6= 7

it is to refute
Ek 6= Ek

Ek being the aggregated constant of {3 + 4, 4 + 3, 7}

Basically clusters in types are rounded up in analyzer,
but equalizer tries to round up them again

Do both passes use the same ‘rounding up code’ in the implementa-
tion? Just curious.

I wrote ‘tries’ because there are shortcomings in the implementation.
I should rather write prechecker rounds up the type of ground terms

introduced by the Choice Rule. Even this seems not to work properly, there are
rare cases that

. . .
proof

thus . . . by ++++;

end;

cannot be changed to

. . . by ++++;

and I suspect that the rounding up of these terms might be a problem. I hope
to fix it when back in Bialystok. To be precise, I do not know if the problem is
with rounding up, I just suspect.

13



The equalizer just ‘adjusts’ the clusters. It means that it moves adjectives
between types of the same aggregate constant.

The real rounding up is not done, and it needs other implementation. The
problem is that the concept of ‘type(s)’ of an aggregated constant is a bit more
complicated. If it is a functorial term, not only its aggregate constant has
‘multiple type’ (I mean that maybe more than one, this correspondence is very
good for me, I have to develop the terminology) but also the arguments are
aggregated classes and has multiple types. Funny that you asked about it.

∗ ∗ ∗

. . . equating a set that is empty with the empty set.
e.g. ∅ A ( SUBSET_1:def 3) with ∅ ( BOOLE:def 1)

Which requirement gives the last equality?

I believe BOOLE and SUBSET (it was built in, but now it should require BOOLE

and SUBSET). The ‘empty’ attribute is now introduced in SUBSET_1.

So how are things like symmetry, antonym, etc. handled? They op-
erate on predicates, so I guess they don’t affect the aggregation of
terms, right? And if they don’t add formulas to the lists, how are
they implemented then?

‘antonym’ and ‘synonym’ are only syntactic sugar, analyzer eliminates them.
Yes, they don’t affect aggregation of terms.
‘symmetry’ and so on (‘reflexivity’, ‘irreflexivity’, ‘connectedness’)

are processed by both equalizer and unifier. It is done in this way that in
all procedures (I hope all) that compares two formulae they take into account
that maybe the order of arguments is different.

14


