
The Mathematical Vernacular

Freek Wiedijk

Nijmegen University

<freek@cs.kun.nl>

Abstract

A ‘mathematical vernacular’ is a formal language for writing mathematical
proofs which resembles the natural language from mathematical texts. Several
systems (Hyperproof, Mizar, Isabelle/Isar) all basically have the same proof
language. It consists of the combination of natural deduction with first order
inference steps. In this note we compare these three languages and present a
simplified common version.

1 Mathematical Vernaculars

The term ‘mathematical vernacular’ (‘wiskundige omgangstaal’ or wot in Dutch)
was introduced by de Bruijn [2] in the eighties. With this term he didn’t mean
the language that mathematicians actually use to communicate their work in prac-
tice (which is a somewhat stylized variant of natural language interspersed with
formulas.) Instead he meant a formal language: a system that he had developed
to represent mathematics. Supposedly, it was close in style to the actual way that
mathematicians communicate, hence the name.

‘Vernacular’ doesn’t seem a word that readily admits a plural: each natural
language (English, Dutch, etc.) only has one vernacular. However, because many
people turned out to have different ideas about the ‘best’ way to have a formal
language resemble ordinary mathematics, one started talking about ‘mathematical
vernaculars’ in the plural. So because many had their own thoughts about what
the ‘mathematical vernacular’ should look like when formalized, the term became
the name of a species of formal language.

This paper doesn’t want to promote an ‘own’ variant of the mathematical ver-
nacular concept. Instead, it just makes an observation about already existing formal
languages. It turns out that in a significant number of systems (‘proof assistants’)
one encounters languages that look almost the same. Apparently there is a canonical
style of presenting mathematics that people discover independently: something like
a natural mathematical vernacular. Because this language apparently is something
that people arrive at independently, we might call it the mathematical vernacular.

Now this ‘natural’ way of representing mathematics basically is the combination
of just a few ideas:

• Natural deduction, written down in ‘Fitch style’: this kind of proof has a
natural block structure (just like procedural programming languages from the
Algol tradition), corresponding to the ‘flag’ concept of de Bruijn.

• Big inference steps: a way to state that some forward deduction of the shape:

A1, . . . , An ` A

is valid in first order logic (and that a checker of the language should ask a
first order prover to fill in the proof.)

1

• A choice for an input language instead of a presentation language: the lan-
guage is not written like natural language, but instead resembles something
like a programming language (so for instance it has a ‘thus’ statement, instead
of saying something like ‘therefore we have proven that. . . ’.)

Abstract mathematics consists of various different activities: defining concepts,
stating propositions, giving proofs. In this paper we exclusively focus on the last
activity: proving. However, when discussing the mathematical vernacular concept,
it turns out that many think that the proof fragment of such a language is not the
interesting one. Instead they think that the interesting questions are about concept
representation. This is mysterious for various reasons:

• The word ‘vernacular’ suggest language, and hence is about form. But the
way concepts are modelled seems to be a question of content. (For instance,
the question of the best way to formalize the real numbers is not a matter of
how to write it down, but of how to shape the mathematics itself.)

• When one looks at the bulk of a mathematical text, most of it is proof. The
definitions and statements of propositions are a fraction of the text compared
to the proofs (which run on for pages.) Similarly, when looking at formal
mathematics, the majority of the ‘code’ is proof steps.

• There clearly is not a consensus about the best way to represent a proof
in a formal system. For instance, both the input language (a sequence of
tactic invocations) and output language (a proof term in some typed lambda
calculus) of the popular type theoretical proof assistants don’t resemble the
language that is discussed in this paper at all.

This note started by the observation that the Mizar [3, 5] and Isar [4] systems
have languages that looked very much the same, but that the words that they
use for the various constructions are completely different. So this note contains a
translation table between the two languages, in section 3. That section therefore
is present in this paper to show that while the mathematical vernacular discussed
here apparently is canonical, its vocabulary certainly is not.

2 Three Systems

Let’s consider a very simple mathematical proof. If A, B, C, D are logical formulas
and we are given the lemmas:

A→ C

B → D

then from those lemmas we can prove that:

∀x (A ∧B → C ∧D)

(We chose here not to have x occur inside A, B, C and D. This is unnatural, but
makes the examples simpler.)

Consider the following three formal versions of a proof. First, in the Hyperproof

2

system of Barwise and Etchemendy [1], we get:

1 A → C Given
2 B → D Given

3 a Assume

4 A ∧ B Assume
1, 4 ⇒ 5 C Log Con
2, 4 ⇒ 6 D Log Con
5, 6 ⇒ 7 C ∧ D ∧ Intro

4 . . . 7 ⇒ 8 (A ∧ B) → (C ∧ D) → Intro

3 . . . 8 ⇒ 9 ∀x ((A ∧ B) → (C ∧ D)) ∀ Intro

Second, in the Mizar System of Trybulec [3, 5] with:

L1: A implies C

L2: B implies D

we have:

theorem

for x holds (A & B implies C & D)

proof

let a;

assume L4: A & B;

thus C by L1,L4;

thus D by L2,L4;

end;

(Generally in Mizar a combination of for and implies like this is written ‘for
x st A & B holds C & D’, but we use the more explicit syntax here, to make it
easier to compare the systems.) Finally, in the Isabelle/Isar system of Wenzel [4],
with:

L1: "A --> C"

L2: "B --> D"

this proof is written like1:

theorem

"ALL x. A & B --> C & D";

proof (intro);

fix a;

assume L4: "A & B";

from L1 L4; show "C"; by blast;

from L2 L4; show "D"; by blast;

qed;

(Note that all three systems are powerful enough to prove this statement in one
single step: these example proofs are just to show the mechanisms available for
proving.)

Clearly, this is three times the same proof, with just the syntax differing. The
structure of these proofs has a number of notable features:

1The fix step really needn’t be present (Isar is not that similar to Mizar). It’s only there to
make this proof structurally equal to the other two. Also, this is not the only way to write down
this proof with Isar: for instance the (intro) method is not necessary if one structures the proof
differently.

3

• A proof consist of a number of lines, each giving a step in the proof. Essen-
tially, this proof consists of four steps:

– introduce the variable a

– introduce the assumption A ∧B

– deduce the conclusion C

– deduce the conclusion D

• There are the basic natural deduction ways to reduce statements that have to
be proved. For instance the assume step is used to prove an implication. It
corresponds to →-introduction, reducing a proof obligation of an implication
to that of its conclusion.

• There is a general purpose first order prover to prove steps from earlier state-
ments automatically. It is called respectively Log Con, by and blast. Actually,
the Hyperproof system has a number of variants of various strengths (Taut
Con, Ana Con) and likewise the Isabelle/Isar system has a whole spectrum of
automated provers (simp, fast, force, auto.) Also, while Log Con and blast

give full first order derivability, Mizar’s by is a weaker version of inference (this
makes checking decidable and much faster; in the other two systems, when
the inference does not hold, the check of correctness may not terminate.)

3 Isar versus Mizar

Both Mizar and Isabelle/Isar make use of ‘natural language’ keywords like show,
thus, hence, then, etc. However, these words apparently don’t have a ‘natural’
meaning, because they mean quite different things in the two systems (showIsar =
thusMizar , thusIsar = henceMizar , henceIsar = thenMizar , etc.)

Here is a translation table between some of the keywords of the two systems:

Isar Mizar Isar Mizar
. 1 hence then

.. 1 hereby 5

... 2 let set

.= 2 next+ assume suppose

@proof 3 note 1

also 2 obtain consider

assume assume presume 5

by 1 proof proof

def 4 qed end

deffunc 4 show thus

defpred 4 sorry 3

finally 2 then 1

fix let ?thesis thesis

from by thus hence

from 1 with then+ by

given 5 {{ now

have no prefix }} end

Quite a number of keywords don’t have an exact match on the other side. The
various categories of this (indicated in the third column of the table) are:

1. Forward inference. Isar’s from, which corresponds to Mizar’s by, is a combi-
nation of Isar’s note (reference to previous statements) and then (‘forward

4

chaining’). In Mizar these two things can’t be separated. Also, in Mizar
there’s only one inference engine, so Mizar doesn’t need keywords (like Isar’s
by, . and ..) to indicate which prover should handle the inference.

2. Equational reasoning. Both Isar and Mizar have support for chaining equa-
tions together, but their mechanisms work a bit differently and don’t map
cleanly to each other. Mizar only does this for equalities, and has something
special at the start of the chain, while Isar does this for all kinds of relations
and has something special at the end (finally).

3. Unchecked proofs. These constructions are for getting around the obligation
of giving a full proof. Isar’s sorry is used to get rid of a subgoal without
proving it, while Mizar’s @proof is for speeding up the reprocessing of a file
by skipping over already correct proofs.

4. Local definitions. It’s very useful to be able to locally define a name to mean
some expression. The mechanisms in Isar and Mizar for this are slightly
different and don’t map exactly to each other (Isar’s let is like Mizar’s set,
but it is more powerful because it also can take expressions apart; Isar’s def
doesn’t do automatic expansion, so isn’t like the local definitions of Mizar.)

5. Goal shuffling. When proving some step in the course of a proof, there is a
certain amount of freedom of moving the location of the statement around in
the proof. The keywords in this category are related to that.

4 A Simplified Vernacular

We now will present a bare bones version of the ‘vernacular’ that we find in the
three systems Hyperproof, Mizar and Isabelle/Isar. We will use Mizar syntax with
a slight modification: instead of using then we will have the special label - for
referring back to the most recent proposition in scope. Also the meaning of the
‘by’ construction will be different from that in Mizar: here we have it mean full
first-order derivability.

Because we focus here on the deductive style of the language, we won’t fix the
syntax for first order formulas, but just use the ordinary mathematical notation for
that. So the language will be a bit ‘fuzzy’, because it mixes mathematical formulas
and computer text. Hopefully that will make it more easy to see what is part of
the formulas and what is part of the deductive structure.

So suppose we are already have syntactic categories label, variable, term and
formula. Then we can give the following grammar2:

statement = proposition justification ;

proposition = [label :] formula

justification =
empty

| by reference {, reference}
| proof {step} [cases] end

reference =
label

| -

step =
statement

| thus statement

2This is of course an extremely simple grammar: the yacc version has only 55 states.

5

| let variable {, variable} ;
| assume proposition ;

| consider variable {, variable} such that proposition justification ;

| take term {, term} ;

cases = per cases justification ; {suppose proposition ; {step}}

empty =

Using the language given by this grammar, the example from the first section be-
comes:

∀x (A ∧B → C ∧D)
proof

let a;

assume L4: A ∧B;

thus C by L1,L4;

thus D by L2,L4;

end;

For a more complex example, here is an extremely explicit proof of the Drinker’s
principle:

∃x (P (x)→ ∀y P (y))
proof

¬¬∃x (P (x)→ ∀y P (y))
proof

assume H1: ¬∃x (P (x)→ ∀y P (y));
H2: ∀xP (x)
proof

let a;

¬¬P (a)
proof

assume H3: ¬P (a);
∃x (P (x)→ ∀y P (y))
proof

take a;

assume P (a);
⊥ by -,H3;

thus ∀y P (y) by -;

end;

thus ⊥ by -,H1;

end;

thus P (a) by -;

end;

∃x (P (x)→ ∀y P (y))
proof

consider a such that >;
take a;

assume P (a);
thus ∀y P (y) by H2;

end;

thus ⊥ by -,H1;

end;

thus ∃x (P (x)→ ∀y P (y)) by -;

end;

6

And here is a more ‘human’ proof:

∃x (P (x)→ ∀y P (y))
proof

per cases;

suppose H1: ∀xP (x);
consider a such that >;
take a;

thus P (a)→ ∀xP (x) by H1;

suppose ∃x¬P (x);
consider a such that H2: ¬P (a) by -;

take a;

assume P (a);
⊥ by -,H2;

thus ∀y P (y) by -;

end;

Of course, because the statement is provable, all that is really needed is the empty
justification:

∃x (P (x)→ ∀y P (y));

5 Proof Steps

We will now describe the language constructions that implement various natural
deduction rules:

• let or ∀-introduction

When the statement that has to be proved is of the form ∀xP (x), then after
the step ‘let y;’ the statement to be proved will be P (y). So we have that:

〈proof of ∀xP (x)〉 ≡
〈preliminary steps〉
let y;

〈proof of P (y)〉

Of course the name of the variable in the let step usually will be the same
as the name of the variable under the ∀ quantifier.

This step corresponds to the natural deduction rule of ∀-introduction:

Γ, y ` P (y)

Γ ` ∀xP (x)
let y

(The reason that a rule for introduction causes the relevant quantifier to be
omitted from the goal, is because in deduction the natural way of reasoning
is backwards.)

• assume or →-introduction, ¬-introduction and reductio ad absurdum

The assume step can be used in three ways:

– First, it is for implication what the let step is for universal quantifica-
tion. So, when the statement to be proved is of the form A → B, then
after the step ‘assume A;’ the statement to be proved will be B. This
means that:

7

〈proof of A → B〉 ≡
〈preliminary steps〉
assume A;

〈proof of B〉

In natural deduction style this is →-introduction:

Γ, A ` B

Γ ` A → B
assume A

– Second, because ¬A is equivalent to A → ⊥, the assume step also can
be used to prove negation:

〈proof of ¬A〉 ≡
〈preliminary steps〉
assume A;

〈proof of ⊥〉

This is ¬-introduction:

Γ, A ` ⊥

Γ ` ¬A
assume A

– Finally, if deducing a contradiction from A proves ¬A, deducing a con-
tradiction from ¬A proves A:

〈proof of A〉 ≡
〈preliminary steps〉
assume ¬A;

〈proof of ⊥〉

This is the principle of ‘reductio ad absurdum’, reasoning from a contra-
diction:

Γ, ¬A ` ⊥

Γ ` A
assume ¬A

• thus or ∧-introduction

The converse to the assume step (which eliminates an hypothesis from the
statement to be proved) is the thus step (which eliminates a conclusion from
the statement to be proved.) If the statement to be proved is of the form
A∧B, then after a ‘thus A by . . .;’ (where the by-justification proves A) the
statement left to be proved will be B. So:

〈proof of A ∧B〉 ≡
〈preliminary steps〉
thus A by . . .;

〈proof of B〉

This step works modulo associativity of ∧: both A and B can have multiple
conjuncts.

In natural deduction style this is the ∧-introduction rule:

Γ ` A Γ ` B

Γ ` A ∧B
thus A

Note that there are two proof obligations above the line in this rule. The
justification of the step corresponds to the left-most one.

8

• per cases or ∨-elimination

This construction is more complicated than the previous one. Suppose we
have to prove B and are able to justify the disjunction A1 ∨ . . . ∨ An. Then
we can prove by cases:

〈proof of B〉 ≡
〈preliminary steps〉
per cases by . . .;

suppose A1;

〈proof of B from A1〉
. . .

suppose An;

〈proof of B from An〉

where the ‘by . . .’ references justify A1 ∨ . . . ∨ An. Often the disjunction is
provable without conditions (for instance because it has the shape A ∨ ¬A)
and there just is a ‘per cases;’.

In natural deduction this is ∨-elimination:

Γ ` A1 ∨ . . . ∨An Γ, A1 ` B . . . Γ, An ` B

Γ ` B
per cases

Again, the left-most of the top subgoals is the justification of the construction.

• consider or ∃-elimination

The consider step is used to apply an existential fact. If one is able to justify
∃xP (x) one may reason about such an x:

〈proof of A〉 ≡
〈preliminary steps〉
consider x such that P (x) by . . .;

〈proof of A〉

So the ‘by . . .’ justifies ∃xP (x).

In natural deduction, this is ∃-elimination:

Γ ` ∃xP (x) Γ, x, P (x) ` A

Γ ` A
consider x such that P (x)

Once more, the top-left subgoal is the justification needed for the step.

• take or ∃-introduction

Finally, to prove an existential statement there’s the take step. If the state-
ment to be proved has the form ∃xP (x), then after a step ‘take a;’ (for some
term a), the statement to be proved will be P (a):

〈proof of ∃xP (x)〉 ≡
〈preliminary steps〉
take a;

〈proof of P (a)〉

In natural deduction this is ∃-introduction:

Γ ` P (a)

Γ ` ∃xP (x)
take a

9

All the other natural deduction rules don’t need a special step of their own, but
just are instances of the by construction.

If we use the correspondences that we just gave to build the natural deduction
tree corresponding to the example proof, we get:

. . .

a, A ∧B ` C
by L1,L4

. . .

a, A ∧B ` D
by L2,L4

a, A ∧B `
end

a, A ∧B ` D
thus D

a, A ∧B ` C ∧D
thus C

a ` A ∧B → C ∧D
assume L4: A ∧B

` ∀x (A ∧B → C ∧D)
let a

6 Loose Deduction

The language that we described in the previous sections follows Mizar in the require-
ment that steps like assume and thus have to follow the structure of the statement
to be proved exactly: so to prove A1 → . . . → Am → B1 ∧ . . .∧Bn one has to have
the lines:

assume A1;

. . .

assume Am;

thus B1 by . . .;

. . .

thus Bn by . . .;

in exactly that order.
This can be loosened considerably, in the following way:

• In order to determine whether it is allowed to do an assume step, bring the
statement to be proved in negative disjunctive normal form. Then a step:

assume Ai1
∧ . . . ∧Aim

;

is allowed if the normal form is ¬A1 ∨ ¬A2 ∨ . . . ∨ ¬An. After the step, of
course, the new statement is the disjunction of the ‘remaining’ ¬Ai.

• In order to determine whether it is allowed to do a thus step, bring the
statement in conjunctive normal form. Then a step:

thus Bi1
∧ . . . ∧Bim

by . . .;

is allowed if the conjuctive normal form is B1 ∧ B2 ∧ . . . ∧ Bn. Again, after
the step the new statement is the conjuction of the remaing Bi.

When using this more loose style of natural deduction, it doesn’t matter for the
proof whether one phrases a proposition in the common mathematical style like:

A1 ∧ . . . ∧An → B

or whether one uses the Curried implication that’s common in type theory:

A1 → . . . → An → B

Both propositions will then behave in the same way.

10

Acknowledgements Thanks to Gertrud Bauer and Marcus Wenzel for explana-
tions about Isar and to Herman Geuvers and Jan Zwanenburg for valuable discus-
sion.

References

[1] J. Barwise and J. Etchemendy. Hyperproof. Number 42 in CSLI Lecture Notes.
CSLI Publications, Stanford, 1995.

[2] N.G. de Bruijn. The mathematical vernacular, a language for mathematics
with typed sets. In P. Dybjer et al., editors, Proceedings of the Workshop on
Programming Languages, Marstrand, Sweden, 1987.

[3] M. Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels,
1993. URL: <http://www.cs.kun.nl/~freek/mizar/mizarmanual.ps.gz>.

[4] M. Wenzel. The Isabelle/Isar Reference Manual. TU München, München, 1999.
URL: <http://isabelle.in.tum.de/dist/Isabelle99/doc/isar-ref.pdf>.

[5] F. Wiedijk. Mizar: An impression. Unpublished,
URL: <http://www.cs.kun.nl/~freek/mizar/mizarintro.ps.gz>, 1999.

11

